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1. INTRODUCTION

The optical turbulence structure parameter &, is a primary parameter in expres-
sions used to characterize electromagnetic energy and image propagation through
the atmosphere. Examples of these expressions include the receiver coherence
diameter, the atmospheric modulation transfer function, the isoplanation effec-
Live path length, and the scintillation average length (Miller and Ricklin,

A basic form of the equation often used for computing C-2 is given by Tatarski
(1961) asn

e1/3t dzl

where

b - a constant - 3.2 (obtained from Wyngaard (1973), Hill (1989),
and Andreas (1988)),

z - height above ground,

Kh = U* kz - turbulent exchange coefficient for heat,

OH - dimensionless lapse rate - - , L < 0 (Hansen, 1980),

k - von Karman's constant,

e - energy dissipation rate - - J (Panofsky, 1968),

0M - - 15.' , L < 0 (Hansen, 1980),

n - real index of refraction,

L - Obukhov length,

dn - height derivative of n,

u* - friction velocity.

In addition, dn is a function of the height derivatives of potential temperature

and specific humidity, that is, df and dq As such, a critical question would

be how can we best approximate these derivatives. In our approaches, we assume
that the environment is in a steady, horizontally homogenous state so that

5



d and z Furthermore, we assume that the derivatives are
expressible in similarity form. For instance, for unstable conditions, the
derivatives of potential temperature 8, specific humidity q, and windspeed v are
written as

- £-.-:i - 5 z'

az - k Li '(2)

aq - L

aIz kz - 1 5 L) (3)

8 V )U*a- - 15 (4)

az kz - L

(Hansen, 1980; Businger, 1973; Hoffert, 1979)

where the integrated forms of equations (2) through (4) are

= +,-t 1 Y + ) (5)

q: \y + Y /Jl6)

S114

v . 1n X 1 + 2tan- } , (7)

S11/2
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= (I - 15.(9

x = (I - 15-E.)1/ 4  
,(10)

S) (11)

Zo = roughness length

L = U*2Tv - Obukhov length (12)

(Lumley and Panofsky (1964); Van Boxel et al., 1989)

0* - temperature scaling length.

q* - specific humidity scaling length.

u * - friction velocity.

-Tr " Tr (I + 0.61q,).

Tr - temperature at the reference height.

qr - specific humidity at the reference height.

g - acceleration due to gravity.

es = es + 0.610"q (13)

Furthermore, since these expressions are based on the notion that the atmosphere
is in steady state and horizontally homogeneous, then for unstable conditions
appropriate time averages are on the order of 20 to 30 min (Hansen, 1991"). This
is an important requirement; that is, we are working with average values.
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Andreas (1988) expressed dn in terms of potential temperature and "absolute"

humidity scaling lengths 8* and Q*. Tunick and Rachele (1991) prefer dn in

terms of potential temperature and "specific" humidity to be consistent with
Tatarski (1961). For example at a wavelength of 0.55 pm (Tunick and Rachele,
1991)

dn -7.9 X I0 - 5 P z + 1.97 9) (14)

where

P - pressure in millibars,

T - temperature in degrees kelvin.

There are several ways of determining 8* and q* for equation (12) when a0 and

aq are expressed in similarity form using equations (2) and (3). Conceptually,

the simplest approach is to evaluate equations (5) through (7) using wind,
temperature, and relative humidity data measured at two heights using sensitive,
but conventional sensors (Rachele and Tunick, 1991). However, experience has
shown (Hansen, 1991*) that measurements from only two heights generally are not
sufficient due to natural variability of the parameters and due to sensor errors.
Furthermore, a disadvantage of this approach is that the measurement, logging,
and processing of these data are not operationally trivial. Even so, this method
was used to establish distributions of H and L'E for this study. Therefore, to
clarify, the windspeed variations that are input are normally distributed with a
constant value used for their variance. The H and L'E inputs, although seemingly
normal with respect to their distributions (see figures 1 to 18 discussed in
section 6), were modeled by the two-level method discussed immediately above.
Later in section 6 we discuss the standard deviations of the derived
distributions for H and LIE.

Another approach, which is theoretically more basic, makes use of turbulent fluc-
tuation covariances and their relationship to the scaling constants, that is,

*
2  = 7 _(14a)

U = , (14b)

u'q$ =7 , (14c)

*Frank V. Hansen, 1991, personal communication, U.S. Army Atmospheric Sciences

Laboratory, White Sands Missile Range, NM
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where u', w', and q' are deviations (fluctuations) from their mean values. The
overbar indicates an average of the fluctuation covariances.

The advantage of this approach is that it only requires measurements at one
height. However, the disadvantage is that the sensors and logging equipment
suitable for making these measurements are delicate and sophisticated, requiring
highly skilled technicians for their operation.

Still another approach for determining the scaling contents is based on the
measurement or modeling of the fluxes of sensible heat and latent heat since
these fluxes are related to the scaling constants 8* and q* as follows:

H =-C pu'" , (15a)

L'E -L'puq , (15b)

where

H - sensible heat flux,

L'E - latent heat flux,

L' - heat of vaporization,

P = density of air.

The friction velocity u* in equation (15) can be approximated using the
similarity relations given by equations (4), (7), and (12).

The modeling method for estimating H and L'E is based on the energy balance
equations as follows. The amount of solar energy reaching the ground is modeled
considering the position of the sun relative to the site of interest; the amount
of energy scattered, absorbed, and transmitted by atmospheric gases and water
vapor; and the longwave transmission toward the ground. Next, one considers
energy reflected by the ground surface (albedo); the longwave emission from the
surface; the energy absorbed by the ground, which, in turn, is either stored in
the ground, used to evaporate moisture (resulting in latent heat); and finally
energy that heats the air (sensible heat). The advantage of this approach is
that it is heavily model oriented; the disadvantage is that it is very complex
;iysically. In any event, the purpose of this report is not to explore the energy

balance approach per se. Our question at this point is the sensitivity of H,

L'E, and V in estimating C2 . Or, put a different way, how well must we estimate

H, LE, and V in our model to provide "acceptable" values of C. The question
of whether we can do this well enough, using the energy balance approach, will
be addressed in a separate study.
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In this study, then, we write C2. in terms cf windspeed, sensible heat flux, and
latent heat flux, assuming that their values are measured or modeled. We then

consider the effect on C-2 if estimates of H, LE, and V are assumed to be in
error or vary for whatever reason. Furthermore, we assume that the variations
are approximately normally distributed as found in a separate study (Rachele and
Tunick, 1991) using the first method, that is, the two-level method discussed
earlier.

2. PRIMARY EQUATIONS

We write C-2 (A = 0.55 pm) for damp unstable conditions (Tunick and Rachele,
1991) as

n= A'0 2 + B'eq" + C'q 2 , (16)

where

A' = b (6.241 x 1O-9) f2k-2/3z-2 /3 1 - } (17)

B' b [3.11 x 10 -9] -. !-k-2/3Z-2/31 - -- (18)
TL

C' = b (3.88 x l-1 0 ) k-2/3z-2/3 1 - (19)

and where

11/2T I j
b - constant - 3.2,

k - von Karman's constant (0.4),

z = height.
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0"- scaling constant for temperature,

q* - scaling constant for specific humidity,

We determine 8" and q" in terms of sensible and latent heat fluxes from equation
(15); that is,

"= -Hx 10' (20)cppu"

q. (L'E) x 10 3  (21)

LIpu

where

H = sensible heat flux (W m-2 ),

(L!E) = latent heat flux (W m-2 ),

Cp - gas constant - 1 x 107 (c.g.s. units),

P - density of moist air - 10-3 gcm-3 ,

u* - friction velocity (cms-),

L/  - latent heat of vaporization - 2.5 x 1010 (c.g.s. units).

Substituting equations (20) and (21) into equation (16) gives

A/ H2( X x106 + BI(H(LE) x 106 C (L'E) 2 X :3 (22)
CpP2u 2) I2CpLIp2u 2  p2 22)

The friction velocity, u*, is a function of H and the Obukhov length L, and L is
functionally related to V. Hence, u* in equation (22) can implicitly be replaced
by V.

From equations (17), (18), and (19) we note that the expressions for A', B', and
C' contain the Obukhov length L, which, in turn, is a function of H, (L'E), and
u*, that is,

- u 03 T__' P (23)
kg(H - 0.61CPT, (LIE) /L)
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where

Tr - reference level temperature,

Tvr - reference level virtual temperature,

g - acceleration due to gravity,

P (4

p, - density of moist air - . (24)

3. SECONDARY EQUATIONS

For unstable conditions we write a relationship between V and L as

v = -- 1-x---) +2 tan I , (25)
C1
0

where

Xo= I 15 1
/4  (26a)

xL)
X0 1 -L (s1/4 (26b)

z. = roughness length.

The differential of V in terms of u* and x is

dV- OV du* + Ldx , (27)

au" ax

where

av_1 - 1) + 2 tan-'x (28a)

aV U*{ 2 + 2 Xi(28b)
ax (x-( ) (x + 1) 1 + X 2
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However, from equation (26a)

dx = -5 - 1 5 ff"/dL (29)
4L 2  L

From equations (28) and (29) we obtain

dv = - - - + 2tanxl du*
Xe.

(30)

+ 30zu* 1 + I 1 15 3/ dL
4kL2 I X2 - 1 x 2 + 1L

Equation (30) is written as

dv = +3du* + a4dL (31)

We use equation (23) to determine the differential of L, that is,

dL- Ldu" + -L -d- , (32)
au av

where

aL 2u*rv (33a)

au* kO*

L 2Trp (33b)
80; k-OV

However, since

e:= 0 + 0.61rq* , (34)

dO= dO* + 0.610rdq* (35)

and
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dL =2ou.Tdu* - u2 T + (36)kgO,, kgO 2~~ .1 1 q

Knowing H and L'E, and having the equations to compute u*, we can determine the
differential forms of 8* and q*, that is,

dO -dH + O@du* (37a)
Cp U* U

dq* - -d(L'E) _ qdu (37b)

L/pu *  U(

4. CALCULATION PROCEDURE

For this calculation procedure we assume that the values of H, L'E, Vr, Tr, Pr,
and fr (reference level relative humidity) are known. We also assume that Tr,

Pr, and fr are precise. The only parameters that vary are H, LIE, and Vr.

1. L and u* are computed interatively using equations (23) and (25).

2. Substituting dO* and dq* of equation (37) into equation (36) gives dL
in terms of du*. Solving equations (36) and (31) gives random variations in u*
and L for random errors in H and (L'E).

3. Variations in C2 are computed using equation (22) for errors in H,
L/E, and u*.

5. DATA SETS

The two cases considered in this study are based on field data collected at
Davis, California, during the summer of 1966 (Stenmark and Drury, 1970). The
Davis field site, a flat, 5-hectare area at 17 m elevation above sea level is
located about 2 km west of the main portion of the University of California at
the Davis Campus, 24 km west of Sacramento, and 113 km northeast of San
Francisco. The data were taken during periods when the surrounding fields, for
the most part, were crop covered and well irrigated, giving, in effect, homoge-
neous surface conditions with respect to temperature and moisture. Advection
effects were considered to be negligible. Profiles of wind, temperature, and
specific humidity (moisture) were measured at nine levels from 25 to 600 cm. Raw
data were processed to give 1/2-h average profiles. Table 1 gives the reference

level (1 m) values for windspeed (V,), pressure, (P,), relative humidity (f,), and

temperature (T), as well as the derived values for the sensible heat flux (H)
and latent heat flux (L/E), for each of these cases.
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TABLE 1. MICROMETEOROLOGICAL DATA FROM DAVIS, CALIFORNIA

Case 1 Case 2
Date 6-22-66 6-3-66
Time (PST) 1430 1200
Vr (cm/s) 447.9 207.7

Pr (mbar) 1000 1000
fr (M) 37.6 35.6
T, (K) 294.35 294.58
H (W/m2 ) 66.57 37.92
L'E (W/m 2 ) 515.43 307.73

6. RESULTS

We alert the reader to a possible pitfall of misinterpretation and application

of the data presented in this report. The so-called natural variations used in
this study were not determined from field data; instead they are creations on our
part of what we felt were reasonable. In particular we not only required that
the distributions of the fluctuations be normally distributed, but we also
specified the values of the varianccs. (Note however that the mean values were
determined from field data--see section 5.) For example, the standard deviation
for the windspeed distributions was 3.33 cm/s. For this study we did not try to
adjust the windspeed variance to changes in the magnitude of the windspeed
itself. For temperature we chose a standard deviation about the mean of 1/3 of
0.1 K. For relative humidity the standard deviation used to generate its normal
distribution was 1/2 of 1 percent relative humidity. The standard deviation used
for the pressure distribution was 1/3 of I mbar.

As far as the variances for the derived distributions for H and L'E are con-
cerned, they (not unexpectedly) varied from case to case. For L'E the standard
deviations changed from 8.0 to 11.3 W/m2 , for cases I and 2, respectively.
Similarly, the change in standard deviations for H was approximately 8.1 to 6.0
W/m2 .

The results of two cases are presented in this section and as such are at best

representations of the sensitivity of Cn to the input parameters, as specified,
and should not be interpreted as real world solutions.

Figure 1* shows the two-level model, derived distributions of H, L'E, and U* for
Case 1. Additionally, the normal distributions for V, are presented to show the
fidelity of the normal distributions generated and used as input parameters.

Note that the range of the distribution of sensible and latent heat for this case
is approximately 50 W/m2 . The distribution for U* shows a narrow range and rela-
tive insensitivity to variations in the input parameters used.

*Figures are presented at the end of the text.
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Figure 2 shows the derived distributions for T* (9*), q*, and L. The range for
these distributions is approximately a factor of 2. Note that for this case,
since U* is relatively large and T* is small, the mean value for the Obukhov
scaling length is quite large, representing weakly unstable atmospheric condi-
tions.

Figure 3 illustrates the random distribution for C'. resulting from variations

in H, L'E, and Vr. The range for the random distribution of C'n is approximately

a factor of 3. Additionally a cumulative distribution for C-2 is shown. It

suggests that about 47 percent of the time C, will have a value equal to or less
than its mean value.

Figures 4 through 6 show the distributions of H, L'E, Vr, U*, T, q*, L, andCn
for Case 2. Note here that mean values for T* and q* are slightly greater in
magnitude than those from Case 1, and the mean value for U* is small. This
results in L values lower in magnitude for this case, representing more moder-

ately unstable atmospheric conditions. Cn is significantly larger in magnitude
(that is, on the order of 10-13) and its range is approximately a factor of 5.

7. SUMMARY AND CONCLUSIONS

In this study we wrote C in terms of windspeed, sensible heat flux, and latent

heat flux. Recall that our goal was to consider the effect on C. if estimates
of Vr, H, and L'E were assumed to be in error or contained natural variabilities.
We used micrometeorological data from Davis, California, to evaluate distribu-

tions for H, L'E, and finally C2 . These figures were discussed in section 6.

We found that by constraining the variations for windspeed to a a - 3.33 cm/s and
with a range of approximately 50 W/m2 for both sensible and latent heat that for

these two cases, C2 could be determined within a factor of 3 or 5.

Now the question remains as to what are acceptable ranges or values for C 2

The answer lies wholly with their use, or, that is, it depends on the application

for C-2 . In a separate study (Rachele and Tunick, 1991), we found that r., the
receiver coherence diameter, can vary (in one case) from 1.26 to 3.76 cm,
causing, in turn, a significant effect upon the near- and far-field slow modu-
lation transfer function. Other cases resulted in similar findings.

In conclusion we feel confident that our methodology was sound and that our
results have the potential to suggest how well we must estimate H and L'E in our
models.
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